Selhoz-katalog.ru

Сельхоз каталог

Сопротивление среды

Перейти к: навигация, поиск

См. также [1] (англ.).

Вязкость жидкостей

Динамический коэффициент вязкости

Внутреннее трение жидкостей, как и газов, возникает при движении жидкости вследствие переноса импульса в направлении, перпендикулярном к направлению движения. Справедлив общий закон внутреннего трения — закон Ньютона:

Коэффициент вязкости (динамическая вязкость) может быть получен на основе соображений о движениях молекул. Очевидно, что будет тем меньше, чем меньше время t «оседлости» молекул. Эти соображения приводят к выражению для коэффициента вязкости, называемому уравнением Френкеля-Андраде:

Иная формула, представляющая коэффициент вязкости, была предложена Бачинским. Как показано, коэффициент вязкости определяется межмолекулярными силами, зависящими от среднего расстояния между молекулами; последнее определяется молярным объёмом вещества . Многочисленные эксперименты показали, что между молярным объёмом и коэффициентом вязкости существует соотношение

где с и b — константы. Это эмпирическое соотношение называется формулой Бачинского.

Динамическая вязкость жидкостей уменьшается с увеличением температуры, и растёт с увеличением давления.

Кинематическая вязкость

В технике, в частности, при расчёте гидроприводов и в триботехнике, часто приходится иметь дело с величиной

и эта величина получила название кинематической вязкости. Здесь  — плотность жидкости;  — динамическая вязкость (см. выше).

Кинематическая вязкость в старых источниках часто указана в сантистоксах (сСт). В СИ эта величина переводится следующим образом:

1 сСт = 1мм21c = 10−6 м2c

Ньютоновские и неньютоновские жидкости

Ньютоновскими называют жидкости, для которых вязкость не зависит от скорости деформации. В уравнении Навье — Стокса для ньютоновской жидкости имеет место аналогичный вышеприведённому закон вязкости (по сути, обобщение закона Ньютона, или закон Навье):


\sigma_{ij} = \eta \left( \frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} \right),

где  — тензор вязких напряжений.

Среди неньютоновских жидкостей, по зависимости вязкости от скорости деформации различают псевдопластики и дилатантные жидкости. Моделью с ненулевым напряжением сдвига (действие вязкости подобно сухому трению) является модель Бингама. Если вязкость меняется с течением времени, жидкость называется тиксотропной. Для неньютоновских жидкостей методика измерения вязкости получает первостепенное значение.

С повышением температуры вязкость многих жидкостей падает. Это объясняется тем, что кинетическая энергия каждой молекулы возрастает быстрее, чем потенциальная энергия взаимодействия между ними. Поэтому все смазки всегда стараются охладить, иначе это грозит простой утечкой через узлы.

Вязкость аморфных материалов

Вязкость аморфных материалов (например, стекла или расплавов) — это термически активизируемый процесс[4]:

где  — энергия активации вязкости (кДж/моль),  — температура (К),  — универсальная газовая постоянная (8,31 Дж/моль·К) и  — некоторая постоянная.

Вязкое течение в аморфных материалах характеризуется отклонением от закона Аррениуса: энергия активации вязкости изменяется от большой величины при низких температурах (в стеклообразном состоянии) на малую величину при высоких температурах (в жидкообразном состоянии). В зависимости от этого изменения аморфные материалы классифицируются либо как сильные, когда , или ломкие, когда . Ломкость аморфных материалов численно характеризуется параметром ломкости Доримуса : сильные материалы имеют , в то время как ломкие материалы имеют .

Вязкость аморфных материалов весьма точно аппроксимируется двуэкспоненциальным уравнением:

с постоянными , , , и , связанными с термодинамическими параметрами соединительных связей аморфных материалов.

В узких температурных интервалах недалеко от температуры стеклования это уравнение аппроксимируется формулами типа VTF или сжатыми экспонентами Кольрауша.

Вязкость

Если температура существенно ниже температуры стеклования , двуэкспоненциальное уравнение вязкости сводится к уравнению типа Аррениуса

с высокой энергией активации , где  — энтальпия разрыва соединительных связей, то есть создания конфигуронов, а  — энтальпия их движения. Это связано с тем, что при аморфные материалы находятся в стеклообразном состоянии и имеют подавляющее большинство соединительных связей неразрушенными.

При двуэкспоненциальное уравнение вязкости также сводится к уравнению типа Аррениуса

но с низкой энергией активации . Это связано с тем, что при аморфные материалы находятся в расправленном состоянии и имеют подавляющее большинство соединительных связей разрушенными, что облегчает текучесть материала.

Относительная вязкость

В технических науках часто пользуются понятием относительной вязкости, под которой понимают отношение коэффициента динамической вязкости (см. выше) раствора к коэффициенту динамической вязкости чистого растворителя:

где μ — динамическая вязкость раствора; μ0 — динамическая вязкость растворителя.

Вязкость некоторых веществ

Для авиастроения и судостроения наиболее важно знать вязкости воздуха и воды.

Вязкость воздуха

Зависимость вязкости сухого воздуха от давления при температурах 300, 400 и 500 K

Вязкость воздуха зависит, в основном, от температуры. При 15.0 °C вязкость воздуха составляет 1.78·10−5 кг/(м·с), 17.8 мкПа.с или 1.78·10−5 Па.с.. Можно найти вязкость воздуха как функцию температуры с помощью Программы расчёта вязкостей газов

Вязкость воды

Зависимость динамической вязкости воды от температуры в жидком состоянии (Liquid Water) и в виде пара (Vapor)

Динамическая вязкость воды составляет 8,90 × 10−4 Па·с при температуре около 25 °C.
Как функция температуры T (K): (Па·с) = A × 10B/(TC)
где A=2.414 × 10−5 Па·с; B = 247.8 K ; и C = 140 K.

Значения вязкостей жидкой воды при разных температурах вплоть до точки кипения приведена ниже.

Температура

[°C]

Вязкость

[мПа·с]

10 1.308
20 1.002
30 0.7978
40 0.6531
50 0.5471
60 0.4668
70 0.4044
80 0.3550
90 0.3150
100 0.2822

Динамическая вязкость разных веществ

Ниже приведены значения коэффициента динамической вязкости некоторых ньютоновских жидкостей:

Вязкость отдельных видов газов при давлении 100 кПа, [мкПа·с]
Газ при 0 °C (273 K) при 27 °C (300 K)
воздух 17.4 18.6
водород 8.4 9.0
гелий 20.0
аргон 22.9
ксенон 21.2 23.2
углекислый газ 15.0
метан 11.2
этан 9.5
Вязкость жидкостей при 25 °C
Жидкость: Вязкость

[Па·с]

Вязкость

[мПа·с]

ацетон 3.06·10−4 0.306
бензол 6.04·10−4 0.604
кровь (при 37 °C) (3-4)·10−3 3-4
касторовое масло 0.985 985
кукурузный сироп 1.3806 1380.6
этиловый спирт 1.074·10−3 1.074
этиленгликоль 1.61·10−2 16.1
глицерин (при 20 °C) 1.49 1490
мазут 2.022 2022
ртуть 1.526·10−3 1.526
метиловый спирт 5.44·10−4 0.544
моторное масло SAE 10 (при 20 °C) 0.065 65
моторное масло SAE 40 (при 20 °C) 0.319 319
нитробензол 1.863·10−3 1.863
жидкий азот (при 77K) 1.58·10−4 0.158
пропанол 1.945·10−3 1.945
оливковое масло .081 81
серная кислота 2.42·10−2 24.2
вода 8.94·10−4 0.894

Примечания

  1. Turbulent shear layers in supersonic flow, Birkhäuser, 2006, ISBN 0-387-26140-0 p. 46
  2. data constants for sutherland’s formula
  3. Viscosity of liquids and gases
  4. Я. И. Френкель. Кинетическая теория жидкостей. Ленинград, Наука, 1975., стр. 226

См. также

Ссылки

  • Аринштейн А., Сравнительный вискозиметр Жуковского Квант, № 9, 1983.
  • Измерение вязкости нефтепродуктов — обзор методов и единиц измерения вязкости.
  • R.H. Doremus. J. Appl. Phys., 92, 7619-7629 (2002).
  • M.I. Ojovan, W.E. Lee. J. Appl. Phys., 95, 3803-3810 (2004).
  • M.I. Ojovan, K.P. Travis, R.J. Hand. J. Phys.: Condensed Matter, 19, 415107 (2007).
  • Булкин П. С. Попова И. И.,Общий физический практикум. Молекулярная физика
  • Статья в энциклопедии Химик.ру
  • Седов Л. И. Механика сплошной среды, том 1

Литература

В Викитеке есть тексты по теме
Вязкости аммиачной воды, аммиака и воды
В Викитеке есть тексты по теме
Вязкость воды

Сопротивление среды.

© 2021–2023 selhoz-katalog.ru, Россия, Тула, ул. Октябр 53, +7 (4872) 93-16-24