Selhoz-katalog.ru

Сельхоз каталог

Геликон (физика)

Геликон (др.-греч. ἕλιξ, род. падеж. ἕλικος — кольцо, спираль) — низкочастотная электромагнитная волна, которая возникает в некомпенсированной плазме, находящейся во внешнем постоянном магнитном поле.

Содержание

Из истории открытия

Существование электромагнитных возбуждений геликонного типа в плазме твердых тел было предсказано в 1960 году: в металлах — О.В. Константиновым и В.И. Перелем [1], в полупроводниках — П. Эгреном [2]. Термин «геликон» был введен Эгреном и отражал круговой характер поляризации этой волны. Через год геликоны были экспериментально обнаружены в натрии [3]. В том же году было установлено, что так называемые «свистящие атмосферики» (вистлеры) представляют собой геликонные волны, распространяющиеся в газовой плазме ионосферы Земли.

Режимы существования геликонов

Возможность распространения электромагнитных волн в хорошо проводящих средах в присутствии сильного магнитного поля можно пояснить следующим образом. В отсутствие магнитного поля в среде имеет место скин-эффект: под действием излучения с частотой, меньшей плазменной, возникают токи, которые экранируют электромагнитное возмущение и препятствуют его проникновению вглубь вещества. Магнитное поле ослабляет это экранирование, заставляя носители заряда под действием силы Лоренца двигаться более упорядоченно и мешая им эффективно реагировать на поле электромагнитной волны. Это дает возможность распространения в среде низкочастотных геликонов.

В зависимости от соотношения длины свободного пробега носителей заряда и длины волны электромагнитного возбуждения выделяют «локальный» и «нелокальный» режимы распространения геликонов. Для рассмотрения каждого из этих случаев приходится применять различные теоретические и экспериментальные подходы.

Локальный режим

Условие локальности может быть записано в виде , где — волновое число геликона, — длина свободного пробега носителей заряда (электронов). Основные особенности геликонных волн могут быть получены в модели свободных электронов. Рассматривая падение на проводящую среду электромагнитной волны частоты в условиях мгновенного равновесия, можно получить дисперсионное соотношение для геликона:

,

где — магнитная проницаемость вакуума, — сопротивление, — тангенс угла Холла между током и напряженностью электрического поля, — постоянное магнитное поле, — угол между и . Здесь — масса электрона, — его заряд, — плотность электронов, — характерное время, за которое носители теряют импульс при столкновениях с решеткой; — константа Холла, — циклотронная частота носителей. Условием распространяющихся волн является неравенство . В полубесконечном металле геликон, распространяющийся вдоль постоянного магнитного поля, является поперечной циркулярно поляризованной волной, электрическое и магнитное поля которой вращаются вокруг направления распространения в том же направлении, что и электроны.

В общем случае необходимо учитывать тензорный характер параметров среды, в частности сопротивления , а также граничные условия в ситуации пространственно ограниченных структур.

Нелокальный режим

Условием нелокальности является соотношение , т.е. на длине свободного пробега укладывается много длин волн геликона. Поэтому в данном случае нельзя пренебрегать микроскопическим (циклотронным) движением носителей заряда. С математической точки зрения это приводит к необходимости вычисления нелокального тензора проводимости. Физическую картину в нелокальном случае определяют эффекты бесстолновительного поглощения волны носителями, крайними случаями которого являются доплер-сдвинутый циклотронный резонанс (условие поглощения , где — скорость свободных электронов, равная скорости Ферми) и магнитное затухание Ландау (). Эти процессы существенно ограничивают диапазон существования распространяющихся геликонных волн.

Эксперименты с геликонами

Методы исследования

К основным методам наблюдения и изучения геликонов относятся:

Результаты исследований

Экспериментальные наблюдения геликонов в локальном режиме позволяют измерить константу Холла, магнетосопротивление, поверхностное поглощение волн при различных геометриях образцов.

Эксперименты в нелокальном режиме в условиях циклотронного поглощения и затухания Ландау позволяют определять поверхностный импеданс образцов, форму поверхности Ферми, оценить роль столкновений в процессах затухания. Отдельным направлением исследований является изучение взаимодействия геликонов с другими типами возбуждения в веществе: со звуком (геликон-фононное взаимодействие, позволяющее осуществлять электромагнитное возбуждение акустических волн), с магнитными моментами ядер (ЯМР-поглощение геликона), со спиновыми волнами в ферромагнетиках (геликон-магнонное взаимодействие).

Примечания

  1. О.В. Константинов, В.И. Перель. О возможности прохождения электромагнитных волн через металл в сильном магнитном поле. // ЖЭТФ. — 1960. — Т. 38. — С. 161.
  2. P. Aigrain. Les "Helicons" dans les semiconducteurs. // Рrос. Int. Conf. on Semiconduction Phys., Prague, 1960. — С. 224.
  3. R. Bowers, C. Legendy, and F. Rose. Oscillatory Galvanomagnetic Effect in Metallic Sodium. // Phys. Rev. Lett. — 1961. — Т. 7. — № 9. — С. 339-341.

Литература

  • Геликон. // Физическая энциклопедия. — Т. 1, С. 428. — М.: СЭ, 1988.
  • Б. Максфилд. Геликоны в твердых телах. // УФН. — 1971. — В. 2. — Т. 103. — С. 233-273.
  • В.Г. Скобов, Электромагнитные волны в металлах в магнитном поле // УФН. — 1966. — В. 7. — Т. 89.

Геликон (физика).

© 2021–2023 selhoz-katalog.ru, Россия, Тула, ул. Октябр 53, +7 (4872) 93-16-24