Selhoz-katalog.ru

Сельхоз каталог

Теорема вейерштрасса последовательности доказательство, теорема вейерштрасса о равномерной сходимости, 2 теорема вейерштрасса

График фунции комплексного переменного e1/z.
Центрирован относительно существенно особой точки z = 0.
Цвет отражает аргумент, а яркость — модуль значения функции.

Теорема Сохоцкого-Вейерштрасса — теорема комплексного анализа, описывающая поведение голоморфной функции в окрестности существенной особой точки.

Она гласит, что всякая однозначная аналитическая функция в каждой окрестности существенно особой точки принимает значения, сколь угодно близкие к произвольному наперёд заданному комплексному числу[1].

Была опубликована Ю. В. Сохоцким в 1868 году в его магистерской диссертации[K 1]; в ней доказывалось, что «в полюсе бесконечного порядка» (так была названа существенно особая точка) функция «должна принимать всевозможные значения» (под значением функции в этой точке в этой работе понималось предельное значение по сходящейся к ней последовательности точек)[2].

Одновременно с Сохоцким теорему о плотности образа проколотой окрестности существенно особой точки опубликовал итальянский математик Ф. Казорати в своей работе «Теория функций комплексных переменных»[K 2]. Вейерштрасс опубликовал эту теорему только в 1876 году в работе «К теории однозначных аналитических функций»[K 3][3]. Впервые же она встречается у французских математиков Ш. Брио и Ж. К. Буке в работе по теории эллиптических функций[K 4][1].

Сохоцкий нигде не отстаивал своего приоритета по поводу этого и других своих результатов, приписывавшихся другим[2]; в литературе на европейских языка теорема известна как «теорема Казорати-Вейерштрасса».

Содержание

Формулировка

Каково бы ни было , в любой окрестности существенно особой точки функции найдётся хотя бы одна точка , в которой значение функции отличается от произвольно заданного комплексного числа B меньше, чем на .

Доказательство

Предположим, что теорема неверна, т.е.

Рассмотрим вспомогательную функцию . В силу нашего предположения функция определена и ограничена в -окрестности точки . Следовательно - устранимая особая точка [4]. Это означает, что разложение функции в окрестности точки имеет вид:

.

Тогда, в силу определения функции , в данной окрестности точки имеет место следующее разложение функции :

,

где аналитическая функция ограничена в -окрестности точки . Но такое разложение означает, что точка является полюсом или правильной точкой функции , и разложение последней в ряд Лорана должно содержать конечное число членов, что противоречит условию теоремы.


Эквивалентным образом эта теорема может быть переформулирована следующим образом:

  • Если точка является существенно особой для функции , аналитической в некоторой проколотой окрестности , то для произвольного комплексного числа можно найти последовательность , сходящуюся к , для которой .
  • множество значений голоморфной функции в сколь угодно малой проколотой окрестности её существенной особой точки всюду плотно в .

Комментарии

  1. Теория интегральных вычетов с некоторыми приложениями. — СПб., 1868.
  2. Сasоrаti F. Teorica delle funzioni di variabili complesse. — Pavia, 1868.
  3. Weierstrass K. Zur Theorie der eindeutigen analytischen Funktionen // Math. Werkc, Bd 2, В. — P. 77-124.
  4. С. Вriot, I. Bouquet. Theorie des fonctions doublement periodiques et em particulier des fonctions elliptiques. — 1859.

Cсылки

  1. ↑ Сохоцкого-Вейерштрасса теорема // Большая Советская Энциклопедия. — М.: Советская энциклопедия, 1969-1978.
  2. ↑ Распределение значений голоморфных отображений. — М.: Наука, Главная редакция физико-математической литературы, 1982..
  3. Сохоцкого теорема // Математическая энциклопедия. — М.: Советская энциклопедия, 1977—1985..
  4. Этот факт доказывается с помощью мажорантной оценки разложения функции в ряд Лорана.

Литература

  • Евграфов М. А. Аналитические функции. — М.: Наука. — 1968, 448 стр.
  • Шабат Б. В. Введение в комплексный анализ. — М.: Наука. — 1969, 577 стр.

Теорема вейерштрасса последовательности доказательство, теорема вейерштрасса о равномерной сходимости, 2 теорема вейерштрасса.

Dizzy Gillespie, Шаблон:Объекты культурного наследия Ижевска.

© 2021–2023 selhoz-katalog.ru, Россия, Тула, ул. Октябр 53, +7 (4872) 93-16-24