Selhoz-katalog.ru

Сельхоз каталог

Затухающие колебания доклад 9 класс, затухающие колебания теория, затухающие колебания напряжения на конденсаторе

Затухающие колебания пружинного маятника

Затухающие колебания — колебания, энергия которых уменьшается с течением времени. Бесконечно длящийся процесс вида в природе невозможен. Свободные колебания любого осциллятора рано или поздно затухают и прекращаются. Поэтому на практике обычно имеют дело с затухающими колебаниями. Они характеризуются тем, что амплитуда колебаний A является убывающей функцией. Обычно затухание происходит под действием сил сопротивления среды, наиболее часто выражаемых линейной зависимостью от скорости колебаний или её квадрата.

В акустике: затухание — уменьшение уровня сигнала до полной неслышимости.

Содержание

Затухающие колебания пружинного маятника

Модель пружинного маятника. B — механизм, обеспечивающий затухание. F — внешняя сила (в примере не присутствует).

Пускай имеется система, состоящая из пружины (подчиняющейся закону Гука), один конец которой жёстко закреплён, а на другом находится тело массой m. Колебания совершаются в среде, где сила сопротивления пропорциональна скорости с коэффициентом c (см. вязкое трение).

Тогда второй закон Ньютона для рассматриваемой системы запишется так:

где  — сила сопротивления,  — сила упругости

, , то есть

или в дифференциальной форме

где k — коэффициент упругости в законе Гука, c — коэффициент сопротивления, устанавливающий соотношение между скоростью движения грузика и возникающей при этом силой сопротивления.

Для упрощения вводятся следующие обозначения: 
\omega_0 = \sqrt{ k \over m },\qquad \zeta = { c \over 2 \sqrt{k m} }.

Величину называют собственной частотой системы,  — коэффициентом затухания.

Тогда дифференциальное уравнение принимает вид

Сделав замену , получают характеристическое уравнение

Корни которого вычисляются по следующей формуле

Решения

Зависимость графиков колебаний от значения .

В зависимости от величины коэффициента затухания решение разделяется на три возможных варианта.

  • Апериодичность

Если , то имеется два действительных корня, и решение дифференциального уравнения принимает вид:

В этом случае колебания с самого начала экспоненциально затухают.

  • Граница апериодичности

Если , два действительных корня совпадают , и решением уравнения является:

В данном случае может иметь место вре́менный рост, но потом — экспоненциальное затухание.

  • Слабое затухание

Если , то решением характеристического уравнения являются два комплексно сопряжённых корня

Тогда решением исходного дифференциального уравнения является

Где  — собственная частота затухающих колебаний.

Константы и в каждом из случаев определяются из начальных условий:

См. также

Литература

Лит.: Савельев И. В., Курс общей физики:Механика, 2001.

Затухающие колебания доклад 9 класс, затухающие колебания теория, затухающие колебания напряжения на конденсаторе.

Похолодание среднего бронзового века, Али, Татьяна, Бен-Ишай, Рон, Файл:Pokrovskiy.jpg.

© 2021–2023 selhoz-katalog.ru, Россия, Тула, ул. Октябр 53, +7 (4872) 93-16-24